Application of Ultrasound Radiation for Agricultural Product Improvement and Environmental Renovation

Nakao Nomura, Ph.D.

Doctorate Program of Bioindustrial Sciences
Faculty of Life and Environmental Sciences

Section for Planning and Coordination,
Global Commons Organization

University of Tsukuba
Contents of Presentation

1. Introduction
2. Environmental Renovation
3. Quality Improvement of Agricultural Product
4. Summary
Application of Ultrasound Technology

1. Utilization of reflection echo from target substances
 echo diagnosis, fish finder, vehicle sonar etc.

2. Utilization of kinetic power of ultrasound radiation
 washing devices, atomizer, cosmetic devices etc.
Contents of Presentation

1. Introduction

2. Environmental Renovation

3. Quality Improvement of Agricultural Product

4. Summary
Percentage of water bodies which meets Water Environmental Standard

Necessary measures have to be taken for Internal load.

Sediment improvement
Lake Kasumigaura

- Basin area: 220km²
- Total dike length: 249.8km
- Ave. depth: 4m
- Max depth: 7m
- Ave. rainfall: 1,282mm
- Annual water flow: Appx. 1.3 Bil m³
- Volume: Appx. 0.8 Bil m³
- Ave. water retention time: Appx. 200 day
- Water quality (COD): 7.5mg/L
- Population around: 0.96M
Enclosed water body in summer

Formation of Density gradient

higher Temp.
lower

Algal blooming

Anaerobic condition

Acceleration of nutrients release
Enclosed water body in winter

- Lower temp.
- Higher temp.
- O_2

Aerobic condition
Rapid monitoring of the lake sediment and its location

Stimulation of mineralization (minimize organic substance content as source of nutrients)
Inhibition of reduction in sediment surface

Biological treatment
- Development of microbial pellets
 - Indigenous bacteria
 - High degradation ability of organic matter
 - Psychrophilic bacteria

Physico-chemical treatment
- Supply of oxygen to bottom layer
- Countermeasure for algal blooms

Monitoring technique
- Rapid monitoring of the lake sediment and its location

Seasons
- Winter
- Summer

Screening
Depress growth of microalgae

Degradation by bacteria or zooplankton which can predate microalgae
Prototype of device for algae treatment with ultrasound radiation
<table>
<thead>
<tr>
<th>Treatment time</th>
<th>bottom</th>
<th>Surface (side view)</th>
<th>Surface (top view)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 min</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Target Area
a. Map of Sydney Olympic Park (O)
b. Overview of the target pond
c. Constructed mesocosm (6-meter in diameter, 8-meter in depth)
a. Before operation
Front: treatment mesocosm, *Back:* Control mesocosm

b. Treatment mesocosm after 1 day operation.
c. Control mesocosm after 1 day operation
d. Treatment mesocosm after 2 day operation
e. Control mesocosm after 2 day operation
Fish finder

- Reflection echo
- Transmission of ultrasound

School of fish A

School of fish B
Geological profiles of a polluted lake sediment
Transducer for sediment monitoring
Outline of the sediment monitoring device

- Satellite
- Sensor GPS
- GPS signal receiver
- Notebook computer
- Signal amplifier
- Analogue/digital transformer
- Location data on map
- Bottom of lake
- Transducer: transmit and receive
- Sediment
Scanning of lake sediments

- Sediment layer (turbid)
- Bottom of lake (soft mud)
Contents of Presentation

1. Introduction
2. Environmental Renovation
3. Quality Improvement of Agricultural Product
4. Summary
Percent removal of ethion standard solution using ultrasonic irradiation with various frequencies
Ethion residue in tangerine after washing in the combination of ultrasonication and ozonation. Error bars denote standard deviations. Different letters indicate significant differences by Duncan's multiple range test ($p \leq 0.05$).
Percent degradation of chlorpyrifos by ultrasonication
Percent degradation of chlorpyrifos by ozonation
Percent degradation of chlorpyrifos after using ultrasonic and ozone treatments
Ultrasound chamber for treatment of agricultural crops
Summary

Ultrasound radiation was found to be effective to deflate phytoplankton which causes water quality deterioration in enclosed water bodies.

Ultrasound radiation was successfully applied to monitor rough morphological profile of lake sediment.

Ultrasound radiation was able to apply to degrade chemical substances causing quality problems of agricultural and aquaculture crops with assist of ozonation or photocatalytic materials.
Special Thanks to

Honda Electronics Co., Ltd.

Dr. Niwooti Whangchai and his research team in Maejo University

Dr. Kanda Whangchai and her research team in Chiangmai University

Research unit for Bioprocess Engineering in University of Tsukuba
Thank you very much for your kind attention!
ขอบคุณมากครับ
ご清聴ありがとうございました。
ご清聴ありがとうございました。